/*! JointJS v0.9.7 - JavaScript diagramming library 2016-04-20
|
|
|
This Source Code Form is subject to the terms of the Mozilla Public
|
License, v. 2.0. If a copy of the MPL was not distributed with this
|
file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
*/
|
(function(root, factory) {
|
|
if (typeof define === 'function' && define.amd) {
|
|
// AMD. Register as an anonymous module.
|
define([], factory);
|
|
} else if (typeof exports === 'object') {
|
|
// Node. Does not work with strict CommonJS, but
|
// only CommonJS-like environments that support module.exports,
|
// like Node.
|
module.exports = factory();
|
|
} else {
|
|
// Browser globals.
|
root.g = factory();
|
}
|
|
}(this, function() {
|
|
// Geometry library.
|
// (c) 2011-2015 client IO
|
|
var g = (function() {
|
|
// Declare shorthands to the most used math functions.
|
var math = Math;
|
var abs = math.abs;
|
var cos = math.cos;
|
var sin = math.sin;
|
var sqrt = math.sqrt;
|
var mmin = math.min;
|
var mmax = math.max;
|
var atan = math.atan;
|
var atan2 = math.atan2;
|
var acos = math.acos;
|
var round = math.round;
|
var floor = math.floor;
|
var PI = math.PI;
|
var random = math.random;
|
var toDeg = function(rad) { return (180 * rad / PI) % 360; };
|
var toRad = function(deg, over360) {
|
over360 = over360 || false;
|
deg = over360 ? deg : (deg % 360);
|
return deg * PI / 180;
|
};
|
var snapToGrid = function(val, gridSize) { return gridSize * Math.round(val / gridSize); };
|
var normalizeAngle = function(angle) { return (angle % 360) + (angle < 0 ? 360 : 0); };
|
|
// Point
|
// -----
|
|
// Point is the most basic object consisting of x/y coordinate,.
|
|
// Possible instantiations are:
|
|
// * `point(10, 20)`
|
// * `new point(10, 20)`
|
// * `point('10 20')`
|
// * `point(point(10, 20))`
|
function point(x, y) {
|
if (!(this instanceof point))
|
return new point(x, y);
|
var xy;
|
if (y === undefined && Object(x) !== x) {
|
xy = x.split(x.indexOf('@') === -1 ? ' ' : '@');
|
this.x = parseInt(xy[0], 10);
|
this.y = parseInt(xy[1], 10);
|
} else if (Object(x) === x) {
|
this.x = x.x;
|
this.y = x.y;
|
} else {
|
this.x = x;
|
this.y = y;
|
}
|
}
|
|
point.prototype = {
|
toString: function() {
|
return this.x + '@' + this.y;
|
},
|
// If point lies outside rectangle `r`, return the nearest point on the boundary of rect `r`,
|
// otherwise return point itself.
|
// (see Squeak Smalltalk, Point>>adhereTo:)
|
adhereToRect: function(r) {
|
if (r.containsPoint(this)) {
|
return this;
|
}
|
this.x = mmin(mmax(this.x, r.x), r.x + r.width);
|
this.y = mmin(mmax(this.y, r.y), r.y + r.height);
|
return this;
|
},
|
// Compute the angle between me and `p` and the x axis.
|
// (cartesian-to-polar coordinates conversion)
|
// Return theta angle in degrees.
|
theta: function(p) {
|
p = point(p);
|
// Invert the y-axis.
|
var y = -(p.y - this.y);
|
var x = p.x - this.x;
|
// Makes sure that the comparison with zero takes rounding errors into account.
|
var PRECISION = 10;
|
// Note that `atan2` is not defined for `x`, `y` both equal zero.
|
var rad = (y.toFixed(PRECISION) == 0 && x.toFixed(PRECISION) == 0) ? 0 : atan2(y, x);
|
|
// Correction for III. and IV. quadrant.
|
if (rad < 0) {
|
rad = 2 * PI + rad;
|
}
|
return 180 * rad / PI;
|
},
|
// Returns distance between me and point `p`.
|
distance: function(p) {
|
return line(this, p).length();
|
},
|
// Returns a manhattan (taxi-cab) distance between me and point `p`.
|
manhattanDistance: function(p) {
|
return abs(p.x - this.x) + abs(p.y - this.y);
|
},
|
// Offset me by the specified amount.
|
offset: function(dx, dy) {
|
this.x += dx || 0;
|
this.y += dy || 0;
|
return this;
|
},
|
magnitude: function() {
|
return sqrt((this.x * this.x) + (this.y * this.y)) || 0.01;
|
},
|
update: function(x, y) {
|
this.x = x || 0;
|
this.y = y || 0;
|
return this;
|
},
|
round: function(decimals) {
|
this.x = decimals ? this.x.toFixed(decimals) : round(this.x);
|
this.y = decimals ? this.y.toFixed(decimals) : round(this.y);
|
return this;
|
},
|
// Scale the line segment between (0,0) and me to have a length of len.
|
normalize: function(len) {
|
var s = (len || 1) / this.magnitude();
|
this.x = s * this.x;
|
this.y = s * this.y;
|
return this;
|
},
|
difference: function(p) {
|
return point(this.x - p.x, this.y - p.y);
|
},
|
// Return the bearing between me and point `p`.
|
bearing: function(p) {
|
return line(this, p).bearing();
|
},
|
// Converts rectangular to polar coordinates.
|
// An origin can be specified, otherwise it's 0@0.
|
toPolar: function(o) {
|
o = (o && point(o)) || point(0, 0);
|
var x = this.x;
|
var y = this.y;
|
this.x = sqrt((x - o.x) * (x - o.x) + (y - o.y) * (y - o.y)); // r
|
this.y = toRad(o.theta(point(x, y)));
|
return this;
|
},
|
// Rotate point by angle around origin o.
|
rotate: function(o, angle) {
|
angle = (angle + 360) % 360;
|
this.toPolar(o);
|
this.y += toRad(angle);
|
var p = point.fromPolar(this.x, this.y, o);
|
this.x = p.x;
|
this.y = p.y;
|
return this;
|
},
|
// Move point on line starting from ref ending at me by
|
// distance distance.
|
move: function(ref, distance) {
|
var theta = toRad(point(ref).theta(this));
|
return this.offset(cos(theta) * distance, -sin(theta) * distance);
|
},
|
// Scale point with origin at point `o`.
|
scale: function(sx, sy, o) {
|
o = (o && point(o)) || point(0, 0);
|
this.x = o.x + sx * (this.x - o.x);
|
this.y = o.y + sy * (this.y - o.y);
|
return this;
|
},
|
// Returns change in angle from my previous position (-dx, -dy) to my new position
|
// relative to ref point.
|
changeInAngle: function(dx, dy, ref) {
|
// Revert the translation and measure the change in angle around x-axis.
|
return point(this).offset(-dx, -dy).theta(ref) - this.theta(ref);
|
},
|
equals: function(p) {
|
return this.x === p.x && this.y === p.y;
|
},
|
snapToGrid: function(gx, gy) {
|
this.x = snapToGrid(this.x, gx);
|
this.y = snapToGrid(this.y, gy || gx);
|
return this;
|
},
|
// Returns a point that is the reflection of me with
|
// the center of inversion in ref point.
|
reflection: function(ref) {
|
return point(ref).move(this, this.distance(ref));
|
},
|
clone: function() {
|
return point(this);
|
},
|
toJSON: function() {
|
return { x: this.x, y: this.y };
|
}
|
};
|
// Alternative constructor, from polar coordinates.
|
// @param {number} r Distance.
|
// @param {number} angle Angle in radians.
|
// @param {point} [optional] o Origin.
|
point.fromPolar = function(r, angle, o) {
|
o = (o && point(o)) || point(0, 0);
|
var x = abs(r * cos(angle));
|
var y = abs(r * sin(angle));
|
var deg = normalizeAngle(toDeg(angle));
|
|
if (deg < 90) {
|
y = -y;
|
} else if (deg < 180) {
|
x = -x;
|
y = -y;
|
} else if (deg < 270) {
|
x = -x;
|
}
|
|
return point(o.x + x, o.y + y);
|
};
|
|
// Create a point with random coordinates that fall into the range `[x1, x2]` and `[y1, y2]`.
|
point.random = function(x1, x2, y1, y2) {
|
return point(floor(random() * (x2 - x1 + 1) + x1), floor(random() * (y2 - y1 + 1) + y1));
|
};
|
|
// Line.
|
// -----
|
function line(p1, p2) {
|
if (!(this instanceof line))
|
return new line(p1, p2);
|
this.start = point(p1);
|
this.end = point(p2);
|
}
|
|
line.prototype = {
|
toString: function() {
|
return this.start.toString() + ' ' + this.end.toString();
|
},
|
// @return {double} length of the line
|
length: function() {
|
return sqrt(this.squaredLength());
|
},
|
// @return {integer} length without sqrt
|
// @note for applications where the exact length is not necessary (e.g. compare only)
|
squaredLength: function() {
|
var x0 = this.start.x;
|
var y0 = this.start.y;
|
var x1 = this.end.x;
|
var y1 = this.end.y;
|
return (x0 -= x1) * x0 + (y0 -= y1) * y0;
|
},
|
// @return {point} my midpoint
|
midpoint: function() {
|
return point((this.start.x + this.end.x) / 2,
|
(this.start.y + this.end.y) / 2);
|
},
|
// @return {point} Point where I'm intersecting l.
|
// @see Squeak Smalltalk, LineSegment>>intersectionWith:
|
intersection: function(l) {
|
var pt1Dir = point(this.end.x - this.start.x, this.end.y - this.start.y);
|
var pt2Dir = point(l.end.x - l.start.x, l.end.y - l.start.y);
|
var det = (pt1Dir.x * pt2Dir.y) - (pt1Dir.y * pt2Dir.x);
|
var deltaPt = point(l.start.x - this.start.x, l.start.y - this.start.y);
|
var alpha = (deltaPt.x * pt2Dir.y) - (deltaPt.y * pt2Dir.x);
|
var beta = (deltaPt.x * pt1Dir.y) - (deltaPt.y * pt1Dir.x);
|
|
if (det === 0 ||
|
alpha * det < 0 ||
|
beta * det < 0) {
|
// No intersection found.
|
return null;
|
}
|
if (det > 0) {
|
if (alpha > det || beta > det) {
|
return null;
|
}
|
} else {
|
if (alpha < det || beta < det) {
|
return null;
|
}
|
}
|
return point(this.start.x + (alpha * pt1Dir.x / det),
|
this.start.y + (alpha * pt1Dir.y / det));
|
},
|
|
// @return the bearing (cardinal direction) of the line. For example N, W, or SE.
|
// @returns {String} One of the following bearings : NE, E, SE, S, SW, W, NW, N.
|
bearing: function() {
|
|
var lat1 = toRad(this.start.y);
|
var lat2 = toRad(this.end.y);
|
var lon1 = this.start.x;
|
var lon2 = this.end.x;
|
var dLon = toRad(lon2 - lon1);
|
var y = sin(dLon) * cos(lat2);
|
var x = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(dLon);
|
var brng = toDeg(atan2(y, x));
|
|
var bearings = ['NE', 'E', 'SE', 'S', 'SW', 'W', 'NW', 'N'];
|
|
var index = brng - 22.5;
|
if (index < 0)
|
index += 360;
|
index = parseInt(index / 45);
|
|
return bearings[index];
|
},
|
|
// @return {point} my point at 't' <0,1>
|
pointAt: function(t) {
|
var x = (1 - t) * this.start.x + t * this.end.x;
|
var y = (1 - t) * this.start.y + t * this.end.y;
|
return point(x, y);
|
},
|
|
// @return {number} the offset of the point `p` from the line. + if the point `p` is on the right side of the line, - if on the left and 0 if on the line.
|
pointOffset: function(p) {
|
// Find the sign of the determinant of vectors (start,end), where p is the query point.
|
return ((this.end.x - this.start.x) * (p.y - this.start.y) - (this.end.y - this.start.y) * (p.x - this.start.x)) / 2;
|
},
|
clone: function() {
|
return line(this);
|
}
|
};
|
|
// Rectangle.
|
// ----------
|
function rect(x, y, w, h) {
|
if (!(this instanceof rect))
|
return new rect(x, y, w, h);
|
if (y === undefined) {
|
y = x.y;
|
w = x.width;
|
h = x.height;
|
x = x.x;
|
}
|
this.x = x;
|
this.y = y;
|
this.width = w;
|
this.height = h;
|
}
|
|
rect.prototype = {
|
toString: function() {
|
return this.origin().toString() + ' ' + this.corner().toString();
|
},
|
// @return {boolean} true if rectangles are equal.
|
equals: function(r) {
|
var mr = g.rect(this).normalize();
|
var nr = g.rect(r).normalize();
|
return mr.x === nr.x && mr.y === nr.y && mr.width === nr.width && mr.height === nr.height;
|
},
|
origin: function() {
|
return point(this.x, this.y);
|
},
|
corner: function() {
|
return point(this.x + this.width, this.y + this.height);
|
},
|
topRight: function() {
|
return point(this.x + this.width, this.y);
|
},
|
bottomLeft: function() {
|
return point(this.x, this.y + this.height);
|
},
|
center: function() {
|
return point(this.x + this.width / 2, this.y + this.height / 2);
|
},
|
// @return {rect} if rectangles intersect, {null} if not.
|
intersect: function(r) {
|
var myOrigin = this.origin();
|
var myCorner = this.corner();
|
var rOrigin = r.origin();
|
var rCorner = r.corner();
|
|
// No intersection found
|
if (rCorner.x <= myOrigin.x ||
|
rCorner.y <= myOrigin.y ||
|
rOrigin.x >= myCorner.x ||
|
rOrigin.y >= myCorner.y) return null;
|
|
var x = Math.max(myOrigin.x, rOrigin.x);
|
var y = Math.max(myOrigin.y, rOrigin.y);
|
|
return rect(x, y, Math.min(myCorner.x, rCorner.x) - x, Math.min(myCorner.y, rCorner.y) - y);
|
},
|
|
// @return {rect} representing the union of both rectangles.
|
union: function(r) {
|
var myOrigin = this.origin();
|
var myCorner = this.corner();
|
var rOrigin = r.origin();
|
var rCorner = r.corner();
|
|
var originX = Math.min(myOrigin.x, rOrigin.x);
|
var originY = Math.min(myOrigin.y, rOrigin.y);
|
var cornerX = Math.max(myCorner.x, rCorner.x);
|
var cornerY = Math.max(myCorner.y, rCorner.y);
|
|
return rect(originX, originY, cornerX - originX, cornerY - originY);
|
},
|
|
// @return {string} (left|right|top|bottom) side which is nearest to point
|
// @see Squeak Smalltalk, Rectangle>>sideNearestTo:
|
sideNearestToPoint: function(p) {
|
p = point(p);
|
var distToLeft = p.x - this.x;
|
var distToRight = (this.x + this.width) - p.x;
|
var distToTop = p.y - this.y;
|
var distToBottom = (this.y + this.height) - p.y;
|
var closest = distToLeft;
|
var side = 'left';
|
|
if (distToRight < closest) {
|
closest = distToRight;
|
side = 'right';
|
}
|
if (distToTop < closest) {
|
closest = distToTop;
|
side = 'top';
|
}
|
if (distToBottom < closest) {
|
closest = distToBottom;
|
side = 'bottom';
|
}
|
return side;
|
},
|
// @return {bool} true if point p is insight me
|
containsPoint: function(p) {
|
p = point(p);
|
if (p.x >= this.x && p.x <= this.x + this.width &&
|
p.y >= this.y && p.y <= this.y + this.height) {
|
return true;
|
}
|
return false;
|
},
|
|
// @return {bool} true if rectangle `r` is inside me.
|
containsRect: function(r) {
|
|
var r0 = rect(this).normalize();
|
var r1 = rect(r).normalize();
|
var w0 = r0.width;
|
var h0 = r0.height;
|
var w1 = r1.width;
|
var h1 = r1.height;
|
|
if (!w0 || !h0 || !w1 || !h1) {
|
// At least one of the dimensions is 0
|
return false;
|
}
|
|
var x0 = r0.x;
|
var y0 = r0.y;
|
var x1 = r1.x;
|
var y1 = r1.y;
|
|
w1 += x1;
|
w0 += x0;
|
h1 += y1;
|
h0 += y0;
|
|
return x0 <= x1 && w1 <= w0 && y0 <= y1 && h1 <= h0;
|
},
|
|
// @return {point} a point on my boundary nearest to p
|
// @see Squeak Smalltalk, Rectangle>>pointNearestTo:
|
pointNearestToPoint: function(p) {
|
p = point(p);
|
if (this.containsPoint(p)) {
|
var side = this.sideNearestToPoint(p);
|
switch (side){
|
case 'right': return point(this.x + this.width, p.y);
|
case 'left': return point(this.x, p.y);
|
case 'bottom': return point(p.x, this.y + this.height);
|
case 'top': return point(p.x, this.y);
|
}
|
}
|
return p.adhereToRect(this);
|
},
|
// Find point on my boundary where line starting
|
// from my center ending in point p intersects me.
|
// @param {number} angle If angle is specified, intersection with rotated rectangle is computed.
|
intersectionWithLineFromCenterToPoint: function(p, angle) {
|
p = point(p);
|
var center = point(this.x + this.width / 2, this.y + this.height / 2);
|
var result;
|
if (angle) p.rotate(center, angle);
|
|
// (clockwise, starting from the top side)
|
var sides = [
|
line(this.origin(), this.topRight()),
|
line(this.topRight(), this.corner()),
|
line(this.corner(), this.bottomLeft()),
|
line(this.bottomLeft(), this.origin())
|
];
|
var connector = line(center, p);
|
|
for (var i = sides.length - 1; i >= 0; --i) {
|
var intersection = sides[i].intersection(connector);
|
if (intersection !== null) {
|
result = intersection;
|
break;
|
}
|
}
|
if (result && angle) result.rotate(center, -angle);
|
return result;
|
},
|
// Move and expand me.
|
// @param r {rectangle} representing deltas
|
moveAndExpand: function(r) {
|
this.x += r.x || 0;
|
this.y += r.y || 0;
|
this.width += r.width || 0;
|
this.height += r.height || 0;
|
return this;
|
},
|
round: function(decimals) {
|
this.x = decimals ? this.x.toFixed(decimals) : round(this.x);
|
this.y = decimals ? this.y.toFixed(decimals) : round(this.y);
|
this.width = decimals ? this.width.toFixed(decimals) : round(this.width);
|
this.height = decimals ? this.height.toFixed(decimals) : round(this.height);
|
return this;
|
},
|
// Normalize the rectangle; i.e., make it so that it has a non-negative width and height.
|
// If width < 0 the function swaps the left and right corners,
|
// and it swaps the top and bottom corners if height < 0
|
// like in http://qt-project.org/doc/qt-4.8/qrectf.html#normalized
|
normalize: function() {
|
var newx = this.x;
|
var newy = this.y;
|
var newwidth = this.width;
|
var newheight = this.height;
|
if (this.width < 0) {
|
newx = this.x + this.width;
|
newwidth = -this.width;
|
}
|
if (this.height < 0) {
|
newy = this.y + this.height;
|
newheight = -this.height;
|
}
|
this.x = newx;
|
this.y = newy;
|
this.width = newwidth;
|
this.height = newheight;
|
return this;
|
},
|
// Find my bounding box when I'm rotated with the center of rotation in the center of me.
|
// @return r {rectangle} representing a bounding box
|
bbox: function(angle) {
|
var theta = toRad(angle || 0);
|
var st = abs(sin(theta));
|
var ct = abs(cos(theta));
|
var w = this.width * ct + this.height * st;
|
var h = this.width * st + this.height * ct;
|
return rect(this.x + (this.width - w) / 2, this.y + (this.height - h) / 2, w, h);
|
},
|
// Scale rectangle with origin at point `o`
|
scale: function(sx, sy, o) {
|
var origin = this.origin().scale(sx, sy, o);
|
this.x = origin.x;
|
this.y = origin.y;
|
this.width *= sx;
|
this.height *= sy;
|
return this;
|
},
|
snapToGrid: function(gx, gy) {
|
var origin = this.origin().snapToGrid(gx, gy);
|
var corner = this.corner().snapToGrid(gx, gy);
|
this.x = origin.x;
|
this.y = origin.y;
|
this.width = corner.x - origin.x;
|
this.height = corner.y - origin.y;
|
return this;
|
},
|
clone: function() {
|
return rect(this);
|
},
|
toJSON: function() {
|
return { x: this.x, y: this.y, width: this.width, height: this.height };
|
}
|
};
|
|
// Ellipse.
|
// --------
|
function ellipse(c, a, b) {
|
if (!(this instanceof ellipse))
|
return new ellipse(c, a, b);
|
c = point(c);
|
this.x = c.x;
|
this.y = c.y;
|
this.a = a;
|
this.b = b;
|
}
|
|
ellipse.prototype = {
|
toString: function() {
|
return point(this.x, this.y).toString() + ' ' + this.a + ' ' + this.b;
|
},
|
bbox: function() {
|
return rect(this.x - this.a, this.y - this.b, 2 * this.a, 2 * this.b);
|
},
|
// Find point on me where line from my center to
|
// point p intersects my boundary.
|
// @param {number} angle If angle is specified, intersection with rotated ellipse is computed.
|
intersectionWithLineFromCenterToPoint: function(p, angle) {
|
p = point(p);
|
if (angle) p.rotate(point(this.x, this.y), angle);
|
var dx = p.x - this.x;
|
var dy = p.y - this.y;
|
var result;
|
if (dx === 0) {
|
result = this.bbox().pointNearestToPoint(p);
|
if (angle) return result.rotate(point(this.x, this.y), -angle);
|
return result;
|
}
|
var m = dy / dx;
|
var mSquared = m * m;
|
var aSquared = this.a * this.a;
|
var bSquared = this.b * this.b;
|
var x = sqrt(1 / ((1 / aSquared) + (mSquared / bSquared)));
|
|
x = dx < 0 ? -x : x;
|
var y = m * x;
|
result = point(this.x + x, this.y + y);
|
if (angle) return result.rotate(point(this.x, this.y), -angle);
|
return result;
|
},
|
clone: function() {
|
return ellipse(this);
|
}
|
};
|
|
// Bezier curve.
|
// -------------
|
var bezier = {
|
// Cubic Bezier curve path through points.
|
// Ported from C# implementation by Oleg V. Polikarpotchkin and Peter Lee (http://www.codeproject.com/KB/graphics/BezierSpline.aspx).
|
// @param {array} points Array of points through which the smooth line will go.
|
// @return {array} SVG Path commands as an array
|
curveThroughPoints: function(points) {
|
var controlPoints = this.getCurveControlPoints(points);
|
var path = ['M', points[0].x, points[0].y];
|
|
for (var i = 0; i < controlPoints[0].length; i++) {
|
path.push('C', controlPoints[0][i].x, controlPoints[0][i].y, controlPoints[1][i].x, controlPoints[1][i].y, points[i + 1].x, points[i + 1].y);
|
}
|
return path;
|
},
|
|
// Get open-ended Bezier Spline Control Points.
|
// @param knots Input Knot Bezier spline points (At least two points!).
|
// @param firstControlPoints Output First Control points. Array of knots.length - 1 length.
|
// @param secondControlPoints Output Second Control points. Array of knots.length - 1 length.
|
getCurveControlPoints: function(knots) {
|
var firstControlPoints = [];
|
var secondControlPoints = [];
|
var n = knots.length - 1;
|
var i;
|
|
// Special case: Bezier curve should be a straight line.
|
if (n == 1) {
|
// 3P1 = 2P0 + P3
|
firstControlPoints[0] = point((2 * knots[0].x + knots[1].x) / 3,
|
(2 * knots[0].y + knots[1].y) / 3);
|
// P2 = 2P1 – P0
|
secondControlPoints[0] = point(2 * firstControlPoints[0].x - knots[0].x,
|
2 * firstControlPoints[0].y - knots[0].y);
|
return [firstControlPoints, secondControlPoints];
|
}
|
|
// Calculate first Bezier control points.
|
// Right hand side vector.
|
var rhs = [];
|
|
// Set right hand side X values.
|
for (i = 1; i < n - 1; i++) {
|
rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x;
|
}
|
rhs[0] = knots[0].x + 2 * knots[1].x;
|
rhs[n - 1] = (8 * knots[n - 1].x + knots[n].x) / 2.0;
|
// Get first control points X-values.
|
var x = this.getFirstControlPoints(rhs);
|
|
// Set right hand side Y values.
|
for (i = 1; i < n - 1; ++i) {
|
rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y;
|
}
|
rhs[0] = knots[0].y + 2 * knots[1].y;
|
rhs[n - 1] = (8 * knots[n - 1].y + knots[n].y) / 2.0;
|
// Get first control points Y-values.
|
var y = this.getFirstControlPoints(rhs);
|
|
// Fill output arrays.
|
for (i = 0; i < n; i++) {
|
// First control point.
|
firstControlPoints.push(point(x[i], y[i]));
|
// Second control point.
|
if (i < n - 1) {
|
secondControlPoints.push(point(2 * knots [i + 1].x - x[i + 1],
|
2 * knots[i + 1].y - y[i + 1]));
|
} else {
|
secondControlPoints.push(point((knots[n].x + x[n - 1]) / 2,
|
(knots[n].y + y[n - 1]) / 2));
|
}
|
}
|
return [firstControlPoints, secondControlPoints];
|
},
|
|
// Solves a tridiagonal system for one of coordinates (x or y) of first Bezier control points.
|
// @param rhs Right hand side vector.
|
// @return Solution vector.
|
getFirstControlPoints: function(rhs) {
|
var n = rhs.length;
|
// `x` is a solution vector.
|
var x = [];
|
var tmp = [];
|
var b = 2.0;
|
|
x[0] = rhs[0] / b;
|
// Decomposition and forward substitution.
|
for (var i = 1; i < n; i++) {
|
tmp[i] = 1 / b;
|
b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
|
x[i] = (rhs[i] - x[i - 1]) / b;
|
}
|
for (i = 1; i < n; i++) {
|
// Backsubstitution.
|
x[n - i - 1] -= tmp[n - i] * x[n - i];
|
}
|
return x;
|
},
|
|
// Solves an inversion problem -- Given the (x, y) coordinates of a point which lies on
|
// a parametric curve x = x(t)/w(t), y = y(t)/w(t), find the parameter value t
|
// which corresponds to that point.
|
// @param control points (start, control start, control end, end)
|
// @return a function accepts a point and returns t.
|
getInversionSolver: function(p0, p1, p2, p3) {
|
var pts = arguments;
|
function l(i, j) {
|
// calculates a determinant 3x3
|
// [p.x p.y 1]
|
// [pi.x pi.y 1]
|
// [pj.x pj.y 1]
|
var pi = pts[i];
|
var pj = pts[j];
|
return function(p) {
|
var w = (i % 3 ? 3 : 1) * (j % 3 ? 3 : 1);
|
var lij = p.x * (pi.y - pj.y) + p.y * (pj.x - pi.x) + pi.x * pj.y - pi.y * pj.x;
|
return w * lij;
|
};
|
}
|
return function solveInversion(p) {
|
var ct = 3 * l(2, 3)(p1);
|
var c1 = l(1, 3)(p0) / ct;
|
var c2 = -l(2, 3)(p0) / ct;
|
var la = c1 * l(3, 1)(p) + c2 * (l(3, 0)(p) + l(2, 1)(p)) + l(2, 0)(p);
|
var lb = c1 * l(3, 0)(p) + c2 * l(2, 0)(p) + l(1, 0)(p);
|
return lb / (lb - la);
|
};
|
},
|
|
// Divide a Bezier curve into two at point defined by value 't' <0,1>.
|
// Using deCasteljau algorithm. http://math.stackexchange.com/a/317867
|
// @param control points (start, control start, control end, end)
|
// @return a function accepts t and returns 2 curves each defined by 4 control points.
|
getCurveDivider: function(p0, p1, p2, p3) {
|
return function divideCurve(t) {
|
var l = line(p0, p1).pointAt(t);
|
var m = line(p1, p2).pointAt(t);
|
var n = line(p2, p3).pointAt(t);
|
var p = line(l, m).pointAt(t);
|
var q = line(m, n).pointAt(t);
|
var r = line(p, q).pointAt(t);
|
return [{ p0: p0, p1: l, p2: p, p3: r }, { p0: r, p1: q, p2: n, p3: p3 }];
|
};
|
}
|
};
|
|
// Scale.
|
var scale = {
|
|
// Return the `value` from the `domain` interval scaled to the `range` interval.
|
linear: function(domain, range, value) {
|
|
var domainSpan = domain[1] - domain[0];
|
var rangeSpan = range[1] - range[0];
|
return (((value - domain[0]) / domainSpan) * rangeSpan + range[0]) || 0;
|
}
|
};
|
|
return {
|
toDeg: toDeg,
|
toRad: toRad,
|
snapToGrid: snapToGrid,
|
normalizeAngle: normalizeAngle,
|
point: point,
|
line: line,
|
rect: rect,
|
ellipse: ellipse,
|
bezier: bezier,
|
scale: scale
|
};
|
|
})();
|
|
|
return g;
|
|
}));
|