/*******************************************************************************
|
NAME ALBERS CONICAL EQUAL AREA
|
|
PURPOSE: Transforms input longitude and latitude to Easting and Northing
|
for the Albers Conical Equal Area projection. The longitude
|
and latitude must be in radians. The Easting and Northing
|
values will be returned in meters.
|
|
PROGRAMMER DATE
|
---------- ----
|
T. Mittan, Feb, 1992
|
|
ALGORITHM REFERENCES
|
|
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
|
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
|
State Government Printing Office, Washington D.C., 1987.
|
|
2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections",
|
U.S. Geological Survey Professional Paper 1453 , United State Government
|
Printing Office, Washington D.C., 1989.
|
*******************************************************************************/
|
|
|
Proj4js.Proj.aea = {
|
init : function() {
|
|
if (Math.abs(this.lat1 + this.lat2) < Proj4js.common.EPSLN) {
|
Proj4js.reportError("aeaInitEqualLatitudes");
|
return;
|
}
|
this.temp = this.b / this.a;
|
this.es = 1.0 - Math.pow(this.temp,2);
|
this.e3 = Math.sqrt(this.es);
|
|
this.sin_po=Math.sin(this.lat1);
|
this.cos_po=Math.cos(this.lat1);
|
this.t1=this.sin_po;
|
this.con = this.sin_po;
|
this.ms1 = Proj4js.common.msfnz(this.e3,this.sin_po,this.cos_po);
|
this.qs1 = Proj4js.common.qsfnz(this.e3,this.sin_po,this.cos_po);
|
|
this.sin_po=Math.sin(this.lat2);
|
this.cos_po=Math.cos(this.lat2);
|
this.t2=this.sin_po;
|
this.ms2 = Proj4js.common.msfnz(this.e3,this.sin_po,this.cos_po);
|
this.qs2 = Proj4js.common.qsfnz(this.e3,this.sin_po,this.cos_po);
|
|
this.sin_po=Math.sin(this.lat0);
|
this.cos_po=Math.cos(this.lat0);
|
this.t3=this.sin_po;
|
this.qs0 = Proj4js.common.qsfnz(this.e3,this.sin_po,this.cos_po);
|
|
if (Math.abs(this.lat1 - this.lat2) > Proj4js.common.EPSLN) {
|
this.ns0 = (this.ms1 * this.ms1 - this.ms2 *this.ms2)/ (this.qs2 - this.qs1);
|
} else {
|
this.ns0 = this.con;
|
}
|
this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
|
this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0)/this.ns0;
|
},
|
|
/* Albers Conical Equal Area forward equations--mapping lat,long to x,y
|
-------------------------------------------------------------------*/
|
forward: function(p){
|
|
var lon=p.x;
|
var lat=p.y;
|
|
this.sin_phi=Math.sin(lat);
|
this.cos_phi=Math.cos(lat);
|
|
var qs = Proj4js.common.qsfnz(this.e3,this.sin_phi,this.cos_phi);
|
var rh1 =this.a * Math.sqrt(this.c - this.ns0 * qs)/this.ns0;
|
var theta = this.ns0 * Proj4js.common.adjust_lon(lon - this.long0);
|
var x = rh1 * Math.sin(theta) + this.x0;
|
var y = this.rh - rh1 * Math.cos(theta) + this.y0;
|
|
p.x = x;
|
p.y = y;
|
return p;
|
},
|
|
|
inverse: function(p) {
|
var rh1,qs,con,theta,lon,lat;
|
|
p.x -= this.x0;
|
p.y = this.rh - p.y + this.y0;
|
if (this.ns0 >= 0) {
|
rh1 = Math.sqrt(p.x *p.x + p.y * p.y);
|
con = 1.0;
|
} else {
|
rh1 = -Math.sqrt(p.x * p.x + p.y *p.y);
|
con = -1.0;
|
}
|
theta = 0.0;
|
if (rh1 != 0.0) {
|
theta = Math.atan2(con * p.x, con * p.y);
|
}
|
con = rh1 * this.ns0 / this.a;
|
qs = (this.c - con * con) / this.ns0;
|
if (this.e3 >= 1e-10) {
|
con = 1 - .5 * (1.0 -this.es) * Math.log((1.0 - this.e3) / (1.0 + this.e3))/this.e3;
|
if (Math.abs(Math.abs(con) - Math.abs(qs)) > .0000000001 ) {
|
lat = this.phi1z(this.e3,qs);
|
} else {
|
if (qs >= 0) {
|
lat = .5 * Proj4js.common.PI;
|
} else {
|
lat = -.5 * Proj4js.common.PI;
|
}
|
}
|
} else {
|
lat = this.phi1z(this.e3,qs);
|
}
|
|
lon = Proj4js.common.adjust_lon(theta/this.ns0 + this.long0);
|
p.x = lon;
|
p.y = lat;
|
return p;
|
},
|
|
/* Function to compute phi1, the latitude for the inverse of the
|
Albers Conical Equal-Area projection.
|
-------------------------------------------*/
|
phi1z: function (eccent,qs) {
|
var sinphi, cosphi, con, com, dphi;
|
var phi = Proj4js.common.asinz(.5 * qs);
|
if (eccent < Proj4js.common.EPSLN) return phi;
|
|
var eccnts = eccent * eccent;
|
for (var i = 1; i <= 25; i++) {
|
sinphi = Math.sin(phi);
|
cosphi = Math.cos(phi);
|
con = eccent * sinphi;
|
com = 1.0 - con * con;
|
dphi = .5 * com * com / cosphi * (qs / (1.0 - eccnts) - sinphi / com + .5 / eccent * Math.log((1.0 - con) / (1.0 + con)));
|
phi = phi + dphi;
|
if (Math.abs(dphi) <= 1e-7) return phi;
|
}
|
Proj4js.reportError("aea:phi1z:Convergence error");
|
return null;
|
}
|
|
};
|