/*****************************************************************************
|
NAME GNOMONIC
|
|
PURPOSE: Transforms input longitude and latitude to Easting and
|
Northing for the Gnomonic Projection.
|
Implementation based on the existing sterea and ortho
|
implementations.
|
|
PROGRAMMER DATE
|
---------- ----
|
Richard Marsden November 2009
|
|
ALGORITHM REFERENCES
|
|
1. Snyder, John P., "Flattening the Earth - Two Thousand Years of Map
|
Projections", University of Chicago Press 1993
|
|
2. Wolfram Mathworld "Gnomonic Projection"
|
http://mathworld.wolfram.com/GnomonicProjection.html
|
Accessed: 12th November 2009
|
******************************************************************************/
|
|
Proj4js.Proj.gnom = {
|
|
/* Initialize the Gnomonic projection
|
-------------------------------------*/
|
init: function(def) {
|
|
/* Place parameters in static storage for common use
|
-------------------------------------------------*/
|
this.sin_p14=Math.sin(this.lat0);
|
this.cos_p14=Math.cos(this.lat0);
|
// Approximation for projecting points to the horizon (infinity)
|
this.infinity_dist = 1000 * this.a;
|
this.rc = 1;
|
},
|
|
|
/* Gnomonic forward equations--mapping lat,long to x,y
|
---------------------------------------------------*/
|
forward: function(p) {
|
var sinphi, cosphi; /* sin and cos value */
|
var dlon; /* delta longitude value */
|
var coslon; /* cos of longitude */
|
var ksp; /* scale factor */
|
var g;
|
var x, y;
|
var lon=p.x;
|
var lat=p.y;
|
/* Forward equations
|
-----------------*/
|
dlon = Proj4js.common.adjust_lon(lon - this.long0);
|
|
sinphi=Math.sin(lat);
|
cosphi=Math.cos(lat);
|
|
coslon = Math.cos(dlon);
|
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
|
ksp = 1.0;
|
if ((g > 0) || (Math.abs(g) <= Proj4js.common.EPSLN)) {
|
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
|
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
|
} else {
|
Proj4js.reportError("orthoFwdPointError");
|
|
// Point is in the opposing hemisphere and is unprojectable
|
// We still need to return a reasonable point, so we project
|
// to infinity, on a bearing
|
// equivalent to the northern hemisphere equivalent
|
// This is a reasonable approximation for short shapes and lines that
|
// straddle the horizon.
|
|
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
|
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
|
|
}
|
p.x=x;
|
p.y=y;
|
return p;
|
},
|
|
|
inverse: function(p) {
|
var rh; /* Rho */
|
var z; /* angle */
|
var sinc, cosc;
|
var c;
|
var lon , lat;
|
|
/* Inverse equations
|
-----------------*/
|
p.x = (p.x - this.x0) / this.a;
|
p.y = (p.y - this.y0) / this.a;
|
|
p.x /= this.k0;
|
p.y /= this.k0;
|
|
if ( (rh = Math.sqrt(p.x * p.x + p.y * p.y)) ) {
|
c = Math.atan2(rh, this.rc);
|
sinc = Math.sin(c);
|
cosc = Math.cos(c);
|
|
lat = Proj4js.common.asinz(cosc*this.sin_p14 + (p.y*sinc*this.cos_p14) / rh);
|
lon = Math.atan2(p.x*sinc, rh*this.cos_p14*cosc - p.y*this.sin_p14*sinc);
|
lon = Proj4js.common.adjust_lon(this.long0+lon);
|
} else {
|
lat = this.phic0;
|
lon = 0.0;
|
}
|
|
p.x=lon;
|
p.y=lat;
|
return p;
|
}
|
};
|